
X_TRADER API Tips and Tricks
- A course by Trading Technologies -

Intended Audience

 Prior Development Experience with C++, C#,
or Visual Basic

 Familiar with XTAPI

 Familiar with Trading Application logic

 This is not an Introduction!

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

XTAPI Overview

 XTAPI is a collection of objects and interfaces
that provide access to the TT environment
through custom applications.

 XTAPI objects provide real-time access to
 Market and Implied Prices, including Depth

 Send, Modify, and Cancel Orders

 Risk Administration and Back Office tasks

 Market Browsing and Contract Specifications

 Receive and process Fill records

XTAPI Overview

 XTAPI uses Microsoft’s COM technology

 Any COM-enabled language can be used to
develop XTAPI applications
 Examples: C++, Visual Basic

 .Net languages are compatible but not native
 Examples: C#, Visual Basic.Net

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

XTAPI is STA

XTAPI is a Single-Threaded Apartment (STA) model.

If you are able to develop your application with the STA model,
you should. Because XTAPI is STA, you will not pay any
marshalling or thread context switching penalties.

TT does not recommend the Multi Threaded Apartment (MTA)
Model because your application will incur thread context
switching with each method call to XTAPI.

Avoiding the COM Barrier

MTA

Application

COM

STA

XTAPI

A thread context switch will
occur whenever a method or
property of XTAPI is called
from your MTA application.

Multi-Threaded Applications

To develop a multi-threaded XTAPI application, you should
still select the STA model. Create a single thread that will act
as the entry point to XTAPI, and have all other threads in
your application access XTAPI through this single thread

XTAPI
XTAPI Access

Thread

User Worker
Thread

User Worker
Thread

User Worker
Thread

Get Properties

The Get() method causes to XTAPI allocate a VARIANT
and return it to your application for extraction.

4 VARIANTS have
been created!

1

2
3

4

Avoiding the COM Barrier

To optimize your code, condense the number of
VARIANT objects that need to be created

Optimally, we would need only a single VARIANT
object to be created, with each of our data

members contained within it

Compound Get Properties

This optimization is accomplished by
using Compound Get Properties

Compound Get Properties request multiple
XTAPI properties within a single method call.

This eliminates the need for XTAPI to
repeatedly allocate individual VARIANT

objects

Example: Compound Get Properties

A single VARIANT is created to hold all of the
property values. Data extraction into typed values
occurs in native code.

1

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Ticks != Points != X_TRADER Display

XTAPI provides specific data types for many
properties that allow you to request values in
different formats.

Let XTAPI handle the data conversions.

Price Formats

X_TRADER String Format

Ticks

Currency

Delta

Data Types

Integer

Decimal

String

Bad Example

The following code snippet shows the extraction of the Best Bid value
in X_TRADER string format, and then converts that price to a Tick
Value.

This requires the user to add their own data conversion code

Use XTAPI to do your data conversion

Specifies Ticks
Format

Using Ticks is recommended

 XTAPI natively works with prices in Ticks

 Modifying your application to use tick prices
will eliminate the need to convert data to and
from different formats both in your
application as well as in XTAPI

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Inside Market vs Depth Updates

To subscribe for Inside Market updates: OnNotifyUpdate

To subscribe for Depth updates: OnNotifyDepthUpdate

Depth + Inside Market

OnNotifyUpdate

OnNotifyDepthUpdate

A market depth update will include any inside market updates

Depth vs. Inside Market Example

• Assume you are writing an automated
Market Making application.
• Per your Market Making agreement with the

Exchange, your quoting orders must be within 2
levels of the Inside Market

• When the Inside Market moves, you may want to
re-quote your order. The decision is based on
liquidity
• If there is sufficient liquidity, you can quote at the

Inside Market

• If there is not, you want to quote up to 2 levels away, in
an attempt to avoid getting filled

Depth vs IM Example…

 Based on the application requirements, you
need only to take an action if the Inside
Market values change

 Therefore you can subscribe to Inside Market
changes and only request Depth when needed

 This will result in fewer event callbacks,
increasing application performance

Depth vs IM Example…

Based on the market making strategy, orders will be placed in
the market:

Summary of Application Logic

When the Inside Market changes, the OnNotifyUpdate event will
be fired. Within your event handler method, request Market
Depth

The application subscribes to the OnNotifyUpdate event in order
to receive a notification when the Inside Market values change

If…Else if… Then….

Level 0 quantity >= 50 Place order at Level 0

Level 0 + Level 1 >= 50 Place order at Level 1

Neither of the above are true Place order at Level 2

Depth vs IM Example…

This will result in
significantly fewer
callbacks. It also only
gives you a depth
snapshot when there
has been a change to
the Inside Market,
eliminating
superfluous
notifications of
outside quoting, and
improving the overall
efficiency of the
application 3 Price Levels

on either side
of the Market

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Filter Updates for the values you want

When using an Instrument Notify (TTInstrNotify) object to receive
event callbacks, you will receive the event when any of the instrument’s properties
change

As an optimization, you can set a Notify Filter that will only fire the event callbacks
when the specified properties change

This is accomplished by using the UpdateFilter property

Now only changes to the Last Traded
Price, the Best Bid, or the Best Ask
will result in the event being fired.

Back to the Depth vs IM Example…

 Our Market Making example can be further
optimized. Currently we are receiving the
OnNotifyUpdate event when any of the Inside
Market values change (Price, Quantity, High, Settle,
etc…)

 By setting a Notify Filter, we can limit the event
callbacks to fire only when the Inside Market Price
changes, ignoring any other updates

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Rapid Fill Delivery

When Rapid Fill Delivery is
OFF (Default)

Order Server Fill Server

Exchange

XTAPI

Rapid Fill Delivery

When Rapid Fill Delivery is ON

Order Server Fill Server

Exchange

XTAPI

XTAPI accepts the first
fill it receives

Rapid Fill Delivery Caveats

XTAPI’s Order Sets listen to Fill notifications from the Order Server,
regardless of the Rapid Fill Delivery setting. This can lead to “in flight”
issues.

For example, assume you have Rapid Fill Delivery set to TRUE, and you
have a single Order Set containing two working orders.

Your application receives a Full Fill Record from the Fill Server. In your
event handler method, you query for the number of orders contained
within the Order Set.

The Order Set (may) report back that it contains 2 orders. This seems like
an error because your Fully Filled order should no longer exist.

Rapid Fill Delivery Caveats…

It’s not an error.

The Order Set will eventually correct itself – when
the Order Server processes the Fill Record and sends
the notification to your application. This “in flight”
issue must be considered when deciding whether to
utilize Rapid Fill Delivery.

Rapid Fill Delivery Caveats…

These properties will not be available from the
Fill Record when Rapid Fill Delivery is ON:

Ex:OrderNo
OrderNo

FillKey

BrokerTec must use Rapid Fill Delivery

You will not receive fill notifications until after the
Workup Phase is over unless you enable Rapid Fill

Delivery.

On BrokerTec, during the Workup Phase, the exchange will
not send a Fill Notification until the Workup Phase is complete.
The Fill records are held at the Fill Server. To get around this,
turn on Rapid Fill Delivery, which will force the Fill Receipts to be
sent from the Order Server.

Rapid Fill Delivery Usage Guidelines

Turn RFD On if… Turn RFD Off if…

Responding to Fills (e.g.
hedging a spread) is the prime
function of your application

Accurate Order Book
management is the prime
function of your application

In General…

The determination of whether to enable or disable
Rapid Fill Delivery should be based on the
requirements of the application. There is no simple
“Yes” or “No” answer.

Rapid Fill Delivery

Now that the costs and benefits of Rapid Fill Delivery

are clear, if you decide to enable them in your

application, here is how:

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Use XTAPI properties

Many users try to track market and order
status values themselves.

XTAPI does it for you.

The following slides illustrate several Order Set
properties that will provide accurate position

information.

Use XTAPI properties – Buy Position

NetPos – Current net position based on fills
BuyPos – Quantity bought based on fills

Example:

You have a single buy order in the market with an order quantity of 12.
You receive a partial fill of 8 for the order

OrderSet.NetPos is 8
OrderSet.BuyPos is 8
OrderSet.SellPos is 0

Use XTAPI properties – Sell Position

NetPos – Current net position based on fills
SellPos – Quantity sold based on fills

Example:

You have a single sell order in the market with an order quantity of 18.
You receive a partial fill of 11 for the order

OrderSet.NetPos is -11
OrderSet.BuyPos is 0
OrderSet.SellPos is 11

Combined Position Example

Example:

You submit a single sell order with an order quantity of 18.
You receive a partial fill of 11 for the order

OrderSet.NetPos is -3
OrderSet.BuyPos is 8
OrderSet.SellPos is 11

You submit a single buy order with an order quantity of 12.
You receive a partial fill of 8 for the order

OrderSet: BuyCnt / SellCnt

Example:

There are three buy orders in the market,
with order quantities of 5, 12, and 17

There are two sell orders in the market,
with order quantities of 2 and 8

OrderSet.BuyCnt = 3
OrderSet.SellCnt = 2

BuyCnt – returns the number of individual buy orders
SellCnt – returns the number of individual sell orders

OrderSet: BuyWrk / SellWrk

Example:

There are three buy orders in the market,
with order quantities of 5, 12, and 17

There are two sell orders in the market,
with order quantities of 2 and 8

OrderSet.BuyWrk = 34
OrderSet.SellWrk = 10

BuyWrk – returns the aggregate quantity of buy orders
SellWrk – returns the aggregate quantity of sell orders

Average Cost of Buys / Sells

To determine the average cost of your buy orders
contained within this Order Set, divide OrderSet.BuyTicks
by OrderSet.BuyPos

To determine the average cost of your sell orders
contained within this Order Set, divide OrderSet.SellTicks
by OrderSet.SellPos

Average Cost of Buys (in Ticks) = BuyTicks / BuyPos
Average Cost of Sells (in Ticks) = SellTicks / SellPos

This slide assumes that your Order Set contains orders and fills

for a single Instrument

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Implied Price Engine

To turn XTAPI’s Implied Engine ON,
the Instrument object’s

CalculateTTImplieds property should
be set to TRUE (1)

By default, XTAPI has the Implieds Engine turned OFF

By default, RTD has the Implieds Engine ON

Exchange vs TT Implieds

Certain exchanges (e.g. LIFFE) disseminate their own Implied
prices. In this case, turning the XTAPI Implied Engine ON/OFF
has no impact.

XTAPI’s Implied Engine will calculate implied prices
for markets when the Exchange does not
disseminate its own implied prices.

Turning the Implied Engine ON or OFF will not affect
Exchange-disseminated implieds prices, only XTAPI-
generated implieds.

Implied Depth?

 The XTAPI Implied Engine does not calculate
Implied Depth.

 If the Exchange disseminates Implied Depth,
XTAPI will deliver this data to you.

 Note that X_TRADER does not display Implied
Depth. The only way to receive Exchange
disseminated Implied Depth, in TT, is through
XTAPI.

Direct versus Implied Price Fields

To view Direct Prices only:

To view Implied (TT Calculated or Disseminated) Prices only:

Ask AskQty

BidQty Bid

IAsk IAskQty

IBidQty IBid

Merging Implieds

To view the “Best” Price, whether Direct or Implied:

MIAsk MIAskQty

MIBidQty MIBid

CalculateTTImplieds has no effect on Merging Implied and Direct
quantities. However, only Exchange-disseminated Implied quantities will
be merged if CalculateTTImplieds is OFF.

Merging Implieds Examples

•When the Implied Bid is the Best Bid:

MIBid = IBid
MIBidQty = IBidQty

•When the Direct Bid is the Best Bid:

MIBid = Bid
MIBidQty = BidQty

•When Implied Bid and Direct Bid prices are equal:

MIBid = Bid
MIBid = IBid
MIBidQty = BidQty + IBidQty

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

InstrNotify

You can attach multiple Instruments to a single Instrument Notify object:

Now both instruments will use the same event handler

InstrNotify

Benefits Risks

Could result in less code

Single point of processing

Less events = less context switching

Processing one contract may lead to
missed messages

Lots of IF statements and comparisons

OrderProfile

• Is Write-Only

•To query properties of a TTOrderProfile object, use GetLast instead
of Get.

• The object’s properties are not fully created until the OrderProfile
is converted to a TTOrderObj by calling
TTOrderSet::SendOrder(myOrderProfile);

A TTOrderProfile object is used to populate the attributes of an
order. A new order is created by calling the OrderSet.SendOrder()
method, passing the Order Profile object as a parameter.

Some things to keep in mind about Order Profiles:

TTHotKeyNotify – The Lost Object

You can use the TTHotKeyNotify object to receive an event callback when
a key combination is pressed. You can map XTAPI functionality to this event

For example, users can create a Hot Key that will fire an event
when the Space Bar is pressed. This would be a quick and
convenient way to implement a Delete All Orders panic button

WARNING! The Hot Key is registered with Windows.
Therefore any use of the key outside the application will result in
your application receiving the callback and possibly taking action.

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Order Set - Overview

•XTAPI allows the segregation of working orders and fills
into logical groupings called Order Sets

•Properties such as P&L, Net Position, Buy Count, etc…
are calculated at the Order Set level

•Order Status events fire from Order Sets

•There is always at least one Order Set, but a user can
create more

Too many Order Sets

While there is no hard-coded limit to the number of Order Sets
a user may create, you should understand that each Order Set
comes with a cost.

When a Fill Record or other Update is received by XTAPI, it
must evaluate each Order Set to determine if an Order Set
Update notification is required to be sent to your application.

The more Order Sets that need to be evaluated, the more
performance will be impacted.

Be conscious of the cost incurred with every Order Set that you
create.

Using multiple Order Sets

May be advantageous because:

•You can logically group orders, such as buy orders
in one order set and sell orders in another.

•For each Order Update, every order in the Order
Set must be evaluated. By limiting the number of
orders in each Order Set, you may experience
performance gains.

Orders in Order Sets are Ordered

When requesting the list of orders contained within an Order Set
the returned array is already ordered such that the greater the index,
the further away from the Inside Market.

Working orders within an Order Set are
ordered such that Working Sells come
before Working Buys

Orders in OrderSet are Ordered

If you have 10 working orders, and the first 5 are Sells, to
get the Buy order closest to the inside market:

TTInstrObj myInstr = (TTInstrObj)m_TTOrderSet[5];

int workingSells = (int)m_TTOrderSet.get_Get(“WrkSell”);
TTInstrObj myFirstBuy = (TTInstrObj)m_TTOrderSet[workingSells];

A simple example:

A more dynamic example:

Use XTAPI properties to determine the number of working Sell orders,
And then offset the array to jump to the first Buy order:

Orders in OrderSet are Ordered

For a single order on either side of the market:

TTInstrObj mySell = (TTInstrObj)m_TTOrderSet[0];
TTInstrObj myBuy = (TTInstrObj)m_TTOrderSet[1];

With only a single Buy and single Sell
in the market, the Sell order will

always be the first in the array, and
the Buy order the second.

TickPrice

Use this method to determine the true tick size

Starting
Price

Increment Output
Format

The “oneTick” string will now contain the
price difference between 0 ticks and 1 tick,
effectively giving you the contract’s tick size.

Iterating an Order Set

Warning!
The Order Set can change while you are iterating

If you must iterate through the Order Set, use the .Net
“foreach” instead of the C-style “for”

The “for” loop, relying on an index to move through a collection, must
first load all of the collection members into memory. “foreach” implements
The IEnumerable interface, which is a native construct in .Net allowing the
iteration through a collection without having to load the contents of the
collection in memory.

With foreach, you can catch a specific exception –
System.InvalidOperationException – that will occur if the collection is
modified during your processing.

Use Ticks to specify price

Internally, XTAPI will convert all prices to Ticks. Specifying a tick
price for an order will save the time spent with a conversion.

Agenda
1. XTAPI Overview

2. The COM Barrier

3. Data Conversions

4. Market Data Updates

5. Filters

6. Rapid Fill Delivery
7. Properties

8. Implied Prices

9. Event Notifications

10. Order Sets

11. Series Keys

Series Keys

•Series keys are guaranteed to be valid only within
a single exchange session

•If your application stores Series Keys, you should
re-request the key at the beginning of each
exchange session.

A Series Key is a numeric identifier for a Financial Instrument
within the TT environment.

Notes:

Working with Series Keys

To request the series key, open an instrument by specifying the
Gateway / Product / Product Type / Contract.

Then request the Series Key from the Instrument object:

Working with Series Keys

You can also open an instrument with a Series Key, and then extract the
Gateway / Product / Product Type / Contract properties:

Example of a
previously
extracted
Series Key

